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Fig. 1. We propose a novel deep learning system for single image HDR reconstruction by synthesizing visually pleasing details in the saturated areas. We
introduce a new feature masking approach that reduces the contribution of the features computed on the saturated areas, to mitigate halo and checkerboard
artifacts. To synthesize visually pleasing textures in the saturated regions, we adapt the VGG-based perceptual loss function to the HDR reconstruction
application. Furthermore, to effectively train our network on limited HDR training data, we propose to pre-train the network on inpainting task. Our method
can reconstruct regions with high luminance, such as the bright highlights of the windows (red inset), and generate visually pleasing textures (green insert).
See Figure 7 for comparison against several other approaches. All images have been gamma corrected for display purposes.

Digital cameras can only capture a limited range of real-world scenes’ lumi-

nance, producing images with saturated pixels. Existing single image high

dynamic range (HDR) reconstruction methods attempt to expand the range

of luminance, but are not able to hallucinate plausible textures, producing

results with artifacts in the saturated areas. In this paper, we present a novel

learning-based approach to reconstruct an HDR image by recovering the

saturated pixels of an input LDR image in a visually pleasing way. Previous

deep learning-based methods apply the same convolutional filters on well-

exposed and saturated pixels, creating ambiguity during training and leading

to checkerboard and halo artifacts. To overcome this problem, we propose a

feature masking mechanism that reduces the contribution of the features

from the saturated areas. Moreover, we adapt the VGG-based perceptual

loss function to our application to be able to synthesize visually pleasing

textures. Since the number of HDR images for training is limited, we propose

to train our system in two stages. Specifically, we first train our system on

a large number of images for image inpainting task and then fine-tune it

on HDR reconstruction. Since most of the HDR examples contain smooth
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regions that are simple to reconstruct, we propose a sampling strategy to

select challenging training patches during the HDR fine-tuning stage. We

demonstrate through experimental results that our approach can reconstruct

visually pleasing HDR results, better than the current state of the art on a

wide range of scenes.
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1 INTRODUCTION
The illumination of real-world scenes is high dynamic range, but

standard digital cameras sensors can only capture a limited range of

luminance. Therefore, these cameras typically produce images with
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under/over-exposed areas. A large number of approaches propose to

generate a high dynamic range (HDR) image by combining a set of

low dynamic range images (LDR) of the scene at different exposures

[Debevec and Malik 1997]. However, these methods either have to

handle the scene motion [Hu et al. 2013; Kalantari and Ramamoorthi

2017; Kang et al. 2003; Oh et al. 2014; Sen et al. 2012; Wu et al. 2018]

or require specialized bulky and expensive optical systems [McGuire

et al. 2007; Tocci et al. 2011]. Single image dynamic range expansion

approaches avoid these limitations by reconstructing an HDR image

using one image. These approaches can work with images captured

with any standard camera or even recover the full dynamic range

of legacy LDR content. As a result, they have attracted considerable

attention in recent years.

Several existing methods extrapolate the light intensity using

heuristic rules [Banterle et al. 2006; Bist et al. 2017; Rempel et al.

2007], but are not able to properly recover the brightness of saturated

areas as they do not utilize context. On the other hand, recent deep

learning approaches [Eilertsen et al. 2017; Endo et al. 2017; Lee

et al. 2018a] systematically utilize contextual information using

convolutional neural networks (CNNs) with large receptive fields.

However, these methods usually produce results with blurriness,

checkerboard, and halo artifacts in saturated areas.

In this paper, we propose a novel learning-based technique to

reconstruct an HDR image by recovering the missing information

in the saturated areas of an LDR image. We design our approach

based on two main observations. First, applying the same convo-

lutional filters on well-exposed and saturated pixels, as done in

previous approaches, results in ambiguity during training and leads

to checkerboard and halo artifacts. Second, using simple pixel-wise

loss functions, utilized by most existing approaches, the network is

unable to hallucinate details in the saturated areas, producing blurry

results. To address these limitations, we propose a feature mask-

ing mechanism that reduces the contribution of features generated

from the saturated content by multiplying them to a soft mask. With

this simple strategy, we are able to avoid checkerboard and halo

artifacts as the network only relies on the valid information of the

input image to produce the HDR image. Moreover, inspired by im-

age inpainting approaches, we leverage the VGG-based perceptual

loss function, introduced by Gatys et al. [2016], and adapt it to the

HDR reconstruction task. By minimizing our proposed perceptual

loss function during training, the network can synthesize visually

realistic textures in the saturated areas.

Since a large number of HDR images, required for training a deep

neural network, are currently not available, we perform the training

in two stages. In the first stage, we train our system on a large set

of images for the inpainting task. During this process, the network

leverages a large number of training samples to learn an internal

representation that is suitable for synthesizing visually realistic

texture in the incomplete regions. In the next step, we fine-tune this

network on the HDR reconstruction task using a set of simulated

LDR and their corresponding ground truth HDR images. Since most

of the HDR examples contain smooth regions that are simple to

reconstruct, we propose a simple method to identify the textured

patches and only use them for fine-tuning.

Our approach can reconstruct regions with high luminance and

hallucinate textures in the saturated areas, as shown in Figure 1. We

demonstrate that our approach can produce better results than the

state-of-the-art methods both on simulated images (Figure 7) and

on images taken with real-world cameras (Figure 9). In summary,

we make the following contributions:

(1) We propose a feature masking mechanism to avoid relying on

the invalid information in the saturated regions (Section 3.1).

This masking approach significantly reduces the artifacts and

improves the quality of the final results (Figure 10).

(2) We adapt the VGG-based perceptual loss function to the HDR

reconstruction task (Section 3.2). Compared to pixel-wise loss

functions, our loss can better reconstruct sharp textures in

the saturated regions (Figure 12).

(3) We propose to pre-train the network on inpainting before

fine-tuning it on HDR generation (Section 3.3). We demon-

strate that the pre-training stage is essential for synthesizing

visually pleasing textures in the saturated areas (Figure 11).

(4) We propose a simple strategy for identifying the textured

HDR areas to improve the performance of training (Sec-

tion 3.4). This strategy improves the network ability to recon-

struct sharp details (Figure 11).

2 RELATED WORK
The problem of single image HDR reconstruction, also known as

inverse tone-mapping [Banterle et al. 2006], has been extensively

studied in the last couple of decades. However, this problem remains

a major challenge as it requires recovering the details from regions

with missing content. In this section, we discuss the existing tech-

niques by classifying them into two categories of non-learning and

learning methods.

2.1 Non-learning Methods
Several approaches propose to perform inverse tone-mapping us-

ing global operators. Landis [2002] applies a linear or exponential

function to the pixels of the LDR image above a certain threshold.

Bist et al. [2017] approximates tone expansion by a gamma function.

They use the characteristics of the human visual system to design

the gamma curve. Luzardo et al. [2018] improve the brightness of

the result by utilizing an operator based on the mid-level mapping.

A number of techniques propose to handle this application through

local heuristics. Banterle et al. [2006] use median-cut [Debevec 2005]

to find areas with high luminance. They then generate an expand-

map to extend the range of luminance in these areas, using an

inverse operator. Rempel et al. [2007] also utilize an expand-map

but use a Gaussian filter followed by an edge-stopping function to

enhance the brightness of saturated areas. Kovaleski and Oliveira

[2014] extend the approach by Rempel et al. [2007] using a cross

bilateral filter. These approaches simply extrapolate the light inten-

sity by using heuristics and, thus, often fail to recover saturated

highlights, introducing unnatural artifacts.

A few approaches propose to handle this application by incor-

porating user interactions in their system. Didyk et al. [2008] en-

hance bright luminous objects in video sequences by using a semi-

automatic classifier to classify saturated regions as lights, reflections,

or diffuse surfaces. Wang et al. [2007] recover the textures in the
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saturated areas by transferring details from the user-selected re-

gions. Their approach demands user interactions that take several

minutes, even for an expert user. In contrast to these methods, we

propose a learning-based approach to systematically reconstruct

HDR images from a wide range of different scenes, instead of relying

on heuristics strategies and user inputs.

2.2 Learning-based Methods
In recent years, several approaches have proposed to tackle this

application using deep convolutional neural networks (CNN). Given

a single input LDR image, Endo et al. [2017] use an auto-encoder

[Hinton and Salakhutdinov 2006] to generate a set of LDR images

with different exposures. These images are then combined to recon-

struct the final HDR image. Lee et al. [2018a] chain a set of CNNs

to sequentially generate the bracketed LDR images. Later, they pro-

pose [Lee et al. 2018b] to handle this application through a recursive

conditional generative adversarial network (GAN) [Goodfellow et al.

2014] combined with a pixel-wise l1 loss.
In contrast to these approaches, a few methods [Eilertsen et al.

2017; Marnerides et al. 2018; Yang et al. 2018] directly reconstruct

the HDR image without generating bracketed images. Eilertsen et al.

[2017] use a network with U-Net architecture to predict the values of

the saturated areas, whereas linear non-saturated areas are obtained

from the input. Marnerides et al. [2018] present a novel dedicated

architecture for end-to-end image expansion. Yang et al. [2018]

reconstruct HDR image for image correction application. They train

a network for HDR reconstruction to recover the missing details

from the input LDR image, and then a second network transfers

these details back to the LDR domain.

While these approaches produce state-of-the-art results, their

synthesized images often contains halo and checkerboard artifacts

and lacks textures in the saturated areas. This is mainly because of

using standard convolutional layers and pixel-wise loss functions.

Note that, several recent methods [Kim et al. 2019; Lee et al. 2018b;

Ning et al. 2018; Xu et al. 2019] use adversarial loss instead of pixel-

wise loss functions, but they still do not demonstrate results with

high-quality textures. This is potentially because the problem of

HDR reconstruction is constrained in the sense that the synthe-

sized content should properly fit the input image using a soft mask.

Unfortunately, GANs are known to have difficulty handling these

scenarios [Bau et al. 2019]. In contrast, we propose a feature mask-

ing strategy and a more constrained VGG-based perceptual loss

to effectively train our network and produce results with visually

pleasing textures.

3 APPROACH
Our goal is to reconstruct an HDR image from a single LDR image

by recovering the missing information in the saturated highlights.

We achieve this using a convolutional neural network (CNN) that

takes an LDR image as the input and estimates the missing HDR

information in the bright regions. We compute the final HDR image

by combining the well-exposed content of the input image and

the output of the network in the saturated areas. Formally, we

reconstruct the final HDR image Ĥ , as follows:

Ĥ = M ⊙ Tγ + (1 −M) ⊙ [exp(Ŷ ) − 1], (1)

1

1
x

α

β(x)

0
Fig. 2. We use this function to
measure howwell-exposed a pixel
is. The value 1 indicates that the
pixel is well-exposed, while 0 is as-
signed to the pixels that are fully
saturated. In our implementation,
we set the threshold α = 0.96.

where the γ = 2.0 is used to

transform the input image to

the linear domain, and ⊙ de-

notes element-wise multiplica-

tion. Here, T is the input LDR

image in the range [0, 1], Ŷ is

the network output in the log-

arithmic domain (Section 3.2),

and M is a soft mask with val-

ues in the range [0, 1] that de-

fines how well-exposed each

pixel is. We obtain this mask by

applying the function β(·) (see
Figure 2) to the input image, i.e.,

M = β(T ). In the following sections, we discuss our proposed feature
masking approach, loss function, as well as the training process.

3.1 Feature Masking
Standard convolutional layers apply the same filter to the entire

image to extract a set of features. This is reasonable for a wide range

of applications, such as image super-resolution [Dong et al. 2015],

style transfer [Gatys et al. 2016], and image colorization [Zhang et al.

2016], where the entire image contains valid information. However,

in our problem, the input LDR image contains invalid information in

the saturated areas. Since meaningful features cannot be extracted

from the saturated contents, naïve application of standard convo-

lution introduces ambiguity during training and leads to visible

artifacts (Figure 10).

We address this problem by proposing a feature masking mecha-

nism (Figure 3) that reduces the magnitude of the features generated

from the invalid content (saturated areas). We do this by multiplying

the feature maps in each layer by a soft mask, as follows:

Zl = Xl ⊙ Ml , (2)

where Xl ∈ R
H×W ×C

is the feature map of layer l with height H ,

widthW , andC channels.Ml ∈ [0, 1]H×W ×C
is the mask for layer l

and has values in the range [0, 1]. The value of one indicates that

the features are computed from valid input pixels, while zero is

assigned to the features that are computed from invalid pixels. Here,

l = 1 refers to the input layer and, thus,Xl=1 is the input LDR image.

Similarly, Ml=1 is the input mask M = β(T ). Note that, since our
masks are soft, weak signals in the saturated areas are not discarded

using this strategy. In fact, by suppressing the invalid pixels, these

weak signals can propagate through the network more effectively.

Once the features of the current layer l are masked, the features

in the next layer Xl+1 are computed as usual:

Xl+1 = ϕl (Wl ∗ Zl + bl ), (3)

whereWl and bl refer to the weight and bias of the current layer,

respectively. Moreover, ϕl is the activation function and * is the

standard convolution operation.

We compute the masks at each layer by applying the convolu-

tional filter to the masks at the previous layer (See Figure 4 for

visualization of some of the masks). The basic idea is that since the

features are computed by applying a series of convolutions, the same

filters can be used to compute the contribution of the valid pixels
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Fig. 3. Illustration of the proposed featuremaskingmechanism. The features
at each layer are multiplied with the corresponding mask before going
through the convolution process. The masks at each layer are obtained by
updating the masks at the previous layer using Eq. 4.

Input Image 

Input Mask Layer 1
Channel 3

Layer 9
Channel 7

Layer 2
Channel 1

Layer 3
Channel 4

Layer 4
Channel 12

Layer 5
Channel 9

Fig. 4. On the left, we show the input image and the corresponding mask.
On the right, we visualize a few masks at different layers of the network.
Note that, as we move deeper through the network, the masks become
blurrier and more uniform. This is expected since the receptive field of the
features become larger in the deeper layers.

in the features. However, since the masks are in the range [0, 1]

and measure the percentage of the contributions, the magnitude of

the filters is irrelevant. Therefore, we normalize the filter weights

before convolving them with the masks as follows:

Ml+1 =

(
|Wl |

∥Wl ∥1 + ϵ

)
∗Ml , (4)

where ∥ · ∥1 is the l1 function and | · | is the absolute operator. Here,

|Wl | is a R
H×W ×C

tensor and ∥Wl ∥1 is a R
1×1×C

tensor. To perform

the division, we replicate the values of ∥Wl ∥1 to obtain a tensor

with the same size as |Wl |. The constant ϵ is a small value to avoid

division by 0 (10
−6

in our implementation).

Note that a couple of recent approaches have proposed strategies

to overcome similar issues in image inpainting [Liu et al. 2018; Yu

et al. 2019]. Specifically, Liu et al. [2018] propose to modify the

convolution process to only apply the filter to the pixels with valid

information. Unfortunately, this approach is specially designed for

cases with binary masks. However, the masks in our application are

soft and, thus, this method is not applicable. Yu et al. [2019] propose

to multiply the features at each layer with a soft mask, similar to

our feature masking strategy. The key difference is that their mask

at each layer is learnable, and it is estimated using a small network

from the features in the previous layer. Because of the additional

parameters and complexity, training this approach on limited HDR

images is difficult. Therefore, this approach is not able to produce

high-quality HDR images (see Section 5.3).

3.2 Loss Function
The choice of the loss function is critical in each learning system.

Our goal is to reconstruct an HDR image by synthesizing plausible

textures in the saturated areas. Unfortunately, using only pixel-wise

loss functions, as utilized by most previous approaches, the network

tends to produce blurry images (Figure 12). Inspired by the recent

image inpainting approaches [Han et al. 2019; Liu et al. 2018; Yang

et al. 2017], we train our network using a VGG-based perceptual

loss function. Specifically, our loss function is a combination of an

HDR reconstruction loss Lr and a perceptual loss Lp , as follows:

L = λ1Lr + λ2Lp (5)

where λ1 = 6.0 and λ2 = 1.0 in our implementation.

Reconstruction Loss: The HDR reconstruction loss is a simple

pixel-wise l1 distance between the output and ground truth images

in the saturated areas. Since the HDR images could potentially have

large values, we define the loss in the logarithmic domain. Given the

estimated HDR image Ŷ (in the log domain) and the linear ground

truth image H , the reconstruction loss is defined as:

Lr = ∥(1 −M) ⊙ (Ŷ − log(H + 1))∥1. (6)

The multiplication by (1 −M) ensures that the loss is computed in

the saturated areas.

Perceptual Loss: Our perceptual term is a combination of the VGG

and style loss functions as follows:

Lp = λ3Lv + λ4Ls . (7)

In our implementation, we set λ3 = 1.0 and λ4 = 120.0. The VGG

loss function Lv evaluates howwell the features of the reconstructed

image match with the features extracted from the ground truth. This

allows the model to produce textures that are perceptually similar

to the ground truth. This loss term is defined as follows:

Lv =
∑
l

∥ϕl (T (H̃ )) − ϕl (T (H ))∥1 (8)

where ϕl is the feature map extracted from the l th layer of the

VGG network. Moreover, the image H̃ is obtained by combining the

information of the ground truth H in the well-exposed regions and

the content of the network’s output Ŷ in the saturated areas using

the maskM , as follows:

H̃ = M ⊙ H + (1 −M) ⊙ Ŷ . (9)

We use H̃ in our loss functions to ensure that the supervision

is only provided in the saturated areas. Finally, T(·) in Eq. 8 is a

function that compresses the range to [0, 1]. Specifically, we use the

differentiable µ-law range compressor:

T(H ) =
log(1 + µH )

log(1 + µ)
, (10)

where µ is a parameter defining the amount of compression (µ = 500

in our implementation). This is done to ensure that the input to the

VGG network is similar to the ones that it has been trained on.
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Fig. 5. A few example patches selected by our patch sampling approach.
These are challenging examples as the HDR images corresponding to these
patches contain complex textures in the saturated areas.

The style loss in Eq. 7 (Ls ) captures style and texture by comparing

global statistics with a Gram matrix [Gatys et al. 2015] collected

over the entire image. Specifically, the style loss is defined as:

Ls =
∑
l

∥Gl (T (H̃ )) −Gl (T (H ))∥1, (11)

where Gl (X ) is the Gram matrix of the features in layer l and is

defined as follows:

Gl (X ) =
1

Kl
ϕl (X )Tϕl (X ). (12)

Here, Kl is a normalization factor computed as ClHlWl . Note that,

the feature ϕl is a matrix of shape (HlWl ) ×Cl and, thus, the Gram
matrix has a size ofCl ×Cl . In our implementation, we use the VGG-

19 [Simonyan and Zisserman 2015] network and extract features

from layers pool1, pool2 and pool3.

3.3 Inpainting Pre-training
Training our system is difficult as large-scale HDR image datasets

are currently not available. Existing techniques [Eilertsen et al. 2017]

overcome this limitation by pre-training their network on simulated

HDR images that are created from standard image datasets like the

MIT Places [Zhou et al. 2014]. They then fine-tune their network

on real HDR images. Unfortunately, our network is not able to learn

to synthesize plausible textures with this strategy (see Figure 11), as

the saturated areas are typically in the bright and smooth regions.

To address this problem, we propose to pre-train our network on

image inpainting tasks. Intuitively, during inpainting, our network

leverages a large number of training data to learn an appropriate

internal representation that is capable of synthesizing visually pleas-

ing textures. In the HDR fine-tuning stage, the network adapts the

learned representation to the HDR domain to be able to synthesize

HDR textures. We follow Liu et al.’s approach [2018] and use their

loss function andmask generation strategy during pre-training. Note

that we still use our feature masking mechanism for pre-training,

but the input masks are binary. We fine-tune the network on real

HDR images using the loss function, discussed in Section 3.2.

One major problem is that the majority of the bright areas in

the HDR examples are smooth and textureless. Therefore, during

fine-tuning, the network adapts to these types of patches and, as

Algorithm 1 Patch Sampling

1: procedure PatchMetric(H ,M)

2: H : HDR image,M : Mask

3: σc = 100.0 ▷ Bilateral filter color sigma

4: σs = 10.0 ▷ Bilateral filter space sigma

5: I = RgbToGray(H )

6: L = log(I + 1)

7: B = bilateralFilter(L,σc ,σs ) ▷ Base Layer

8: D = L - B ▷ Detail Layer

9: Gx = getGradX(D)
10: Gy = getGradY(D)
11: G = abs(Gx ) + abs(Gy )

12: return mean(G ⊙ (1 −M))
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k x k conv layer
downsample by 2

concatenation

3333333

k

k x k conv layer
upsample by 2

Output

LDR Image

Fig. 6. The proposed network architecture. The model takes as input the
RGB LDR image and outputs an HDR image. We use a feature masking
mechanism in all the convolutional layers.

a result, has difficulty producing textured results (see Figure 11).

In the next section, we discuss our strategy to select textured and

challenging patches.

3.4 Patch Sampling
Our goal is to select the patches that contain texture in the saturated

areas. We perform this by first computing a score for each patch and

then choosing the patches with a high score. The main challenge

here is finding a good metric that properly detects the textured

patches. One way to do this is to compute the average of the gradient

magnitude in the saturated regions. However, since our images are

in HDR and can have large values, this approach can detect a smooth

region with bright highlights as textured.

To avoid this issue, we propose to first decompose the HDR image

into base and detail layers using a bilateral filter [Durand and Dorsey

2002]. We use the average of the gradients (Sobel operator) of the

detail layer in the saturated areas as our metric to detect the textured

patches. We consider all the patches with a mean gradient above

a certain threshold (0.85 in our implementation) as textured, and

the rest are classified as smooth. Since the detail layer only contains

variations around the base layer, this metric can effectively measure

the amount of textures in an HDR patch. Figure 5 shows example

of patches selected using this metric. As shown in Figure 11, this

simple patch sampling approach is essential for synthesizing HDR

images with sharp and artifact-free details in the saturated areas.

The summary of our patch selection strategy is listed in Algorithm 1.

4 IMPLEMENTATION
Architecture. We use a network with U-Net architecture [Ron-

neberger et al. 2015], as shown in Figure 6. We use the feature

masking strategy in all the convolutional layers and up-sample the

ACM Trans. Graph., Vol. 39, No. 4, Article 80. Publication date: July 2020.
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Ours Input Endo Eilertsen Ours Ground truthMarneridesInput

Fig. 7. We compare our method against state-of-the-art approaches of Endo et al. [2017], Eilertsen et al. [2017], and Marnerides et al. [2018] on a diverse set of
synthetic scenes. Our method is able to synthesize textures in the saturated areas better than the other approaches (rows one to four), while producing results
with similar or better quality in the bright highlights (fifth row).

features in the decoder using nearest neighbor. All the encoder lay-

ers use Leaky ReLU activation function [Maas et al. 2013]. On the

other hand, we use ReLU [Nair and Hinton 2010] in all the decoder

layers, with the exception of the last one, which has a linear acti-

vation function. We use skip connections between all the encoder

layers and their corresponding decoder layers.

Dataset. We use different datasets for each training step. For the

image inpainting step, we use the MIT Places [Zhou et al. 2014]

dataset with the original train, test, and validation splits. We choose

Places for this step because it contains a large number of scenes

(∼ 2.5M images) with diverse textures. We use the method of Liu

et al. [2018] to generate masks of random streaks and holes of arbi-

trary shapes and sizes. On the other hand, for the HDR fine-tuning

step, we collect approximately 2,000 HDR images from 735 HDR

images and 34 HDR videos. From each HDR image, we extract 250

random patches of size 512×512 and generate the input LDR patches

following the approach by Eilertsen et al. [2017]. We then select a

subset of these patches using our patch selection strategy. We also

discard patches with no saturated content, since they do not provide

any source of learning to the network. Our final training dataset is

a set of 100K input and corresponding ground truth patches.

Training. We initialize our network using the Xavier approach

[Glorot and Bengio 2010] and train it on image inpainting task until

convergence.We then fine-tune the network on HDR reconstruction.

We train the network with a learning rate of 2× 10
−4

in both stages.

However, during the second stage, we reduce the learning rate by a

factor of 2.0when the optimization plateaus. The training process is

performed until convergence. Both inpainting and HDR fine-tuning

stages are optimized using Adam [Kingma and Ba 2015] with the

default parameters β1 = 0.9 and β2 = 0.999 and mini-batch size of 4.

The entire training takes approximately 11 days on a machine with

an Intel Core i7, 16GB of memory, and an Nvidia GTX 1080 Ti GPU.

5 RESULTS
We implement our network in PyTorch [Paszke et al. 2019], but write

the data pre-processing, data augmentation, and patch sampling
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Table 1. Numerical comparison in terms of mean square error (MSE) and
HDR-VDP-2 [Mantiuk et al. 2011] against existing learning-based single
image HDR reconstruction approaches.

Method MSE HDR-VDP-2
Endo et al. [2017] 0.0390 55.67

Eilertsen et al. [2017] 0.0387 59.11

Marnerides et al. [2018] 0.0474 54.31

Ours 0.0356 63.18

code in C++. We implement the feature masking mechanism using

the existing standard convolutional layer in PyTorch. We compare

our approach against three existing learning-based single image

HDR reconstruction approaches of Endo et al. [2017], Eilertsen et al.

[2017], andMarnerides et al. [2018].We use the source code provided

by the authors to generate the results for all the other approaches.

5.1 Synthetic Images
We begin by quantitatively comparing our approach against the

other methods in terms of mean squared error (MSE) and HDR-VDP-

2 [Mantiuk et al. 2011] in Table 1. The errors are computed on a test

set of 75 randomly selected HDR images, with resolutions ranging

from 1024 × 768 to 2084 × 2844. We generate the input LDR images

using various camera curves and exposures, similar to the approach

by Eilertsen et al. [2017]. We compute the MSE values on the gamma

corrected images and HDR-VDP-2 scores are obtained on the linear

HDR images. As seen, our method produces significantly better

results, which demonstrate the ability of our network to accurately

recover the full range of luminance.

Next, we compare our approach against the other methods on

five challenging scenes in Figure 7. Overall other approaches are not

able to synthesize texture and produce results with blurriness, dis-

coloration, and checkerboard artifacts. However, our approach can

effectively utilize the information in the non-saturated color chan-

nels and the contextual information to synthesize visually pleasing

textures. It is worth noting that although our approach has been

trained using a perceptual loss, it can still properly recover the

bright highlights. For example, our results in Figure 7 (fifth row) are

similar to Eilertsen et al. [2017] and better than Endo et al. [2017]

and Marnerides et al. [2018].

We also demonstrate that our approach can consistently generate

high-quality results on images with different amount of saturated ar-

eas in Figure 8. As can be seen, the results of all the other approaches

degrade quickly by increasing the percentage of the saturated pixels

in the input LDR image. On the other hand, our approach is able to

produce high-quality results with sharp details and bright highlights

in all the cases.

5.2 Real Images
We show the generality of our approach by producing results on a set

of real images, captured with standard cameras, in Figure 9. Specifi-

cally, the top three images are from Google HDR+ dataset [Hasinoff

et al. 2016], captured with a variety of smartphones, such as Nexus

5/6/5X/6P, Pixel, and Pixel XL. The image in the last row is captured

by a Canon 5D Mark IV camera. All the other approaches are not

able to properly reconstruct the saturated regions, producing results

with discoloration and blurriness, as indicated by the arrows. On

EilertsenEndo OursInput Marnerides

4%
8%

10
%

Fig. 8. We compare the performance of the proposed method against previ-
ous methods for various amounts of saturated areas. The numbers indicate
the percentage of the total number of pixels that are saturated in the in-
put. Although our method slightly degrades as the saturation increases, we
consistently present better results than the previous methods.
Table 2. We evaluate the effectiveness of our masking and pre-training
strategies by comparing against other alternatives in terms ofMSE andHDR-
VDP-2 [Mantiuk et al. 2011]. Here, SConv, GConv, IMask, and FMask refer to
standard convolution, gated convolution [Yu et al. 2019], only masking the
input image, and our full feature masking approach, respectively. Moreover,
Inp. pre-training and HDR pre-training correspond to our proposed pre-
training on inpainting and HDR reconstruction tasks, respectively.

Method (Masking + Pre-training) MSE HDR-VDP-2
SConv + HDR pre-training 0.0402 58.43

SConv + Inp. pre-training 0.0374 60.03

GConv + HDR pre-training 0.0398 53.32

GConv + Inp. pre-training 0.1017 43.13

IMask + HDR pre-training 0.0398 58.39

IMask + Inp. pre-training 0.0369 61.27

FMask + HDR pre-training 0.0393 58.81

FMask + Inp. pre-training (Ours) 0.0356 63.18

the other hand, our method is able to properly increase the dynamic

range by synthesizing realistic textures.

5.3 Ablation Studies

Inpainting Pre-training. We begin studying the effect of the pro-

posed inpainting pre-training step by comparing it against the

commonly-used synthetic HDR pre-training in Table 2 and Figure 11.

As seen, our pre-training (“FMask + Inp. pre-training (Ours)”) per-

forms better than HDR pre-training (“FMask + HDR pre-training”)

both numerically and visually. Specifically, as shown in Figure 11,

our network using inpainting pre-training is able to learn better

features and synthesizes sharp textures in the saturated areas.
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EilertsenEndo OursInput Marnerides
Fig. 9. Comparison against state-of-the-art approaches on images captured by standard cameras. Zoom in to the electronic version to see the differences.

Feature
Masking (Ours) 

Standard
Convolution

Ground truthFeature Masking (Ours) 

Fig. 10. In regions with both saturated and well-exposed content (bound-
aries of sky and mountain and bright building lights), the response of the
invalid saturated areas in standard convolution dominates the feature maps.
Therefore, the network cannot properly utilize the content of the valid re-
gions, introducing high frequency checkerboard artifacts (top row) and
blurriness and halo (bottom row). Our approach suppresses the features
from the saturated content and allows the network to synthesize the image
using the well-exposed information.

Feature Masking. Here, we compare our feature masking strat-

egy against several other approaches in Table 2. Specifically, we

compare our method against standard convolution (SConv), gated

convolution [Yu et al. 2019] (GConv), and the simpler version of

our masking strategy where the mask is only applied to the input

(IMask). For completeness, we include the result of each method

with both inpainting and HDR pre-training. As seen, our masking

strategy is considerably better than the other methods. It is worth

noting that unlike other methods, the performance of gated convo-

lution with inpainting pre-training is worse than HDR pre-training.

This is mainly because gated convolution estimates the masks at

each layer using a separate set of networks which become unstable

after transitioning from inpainting pre-training to HDR fine-tuning.

We also visually compare our feature masking method against

standard convolution in Figure 10. Standard convolution produces

results with checkerboard artifacts (top) and halo and blurriness

(bottom), while our network with feature masking produces consid-

erably better results. Moreover, we visually compare our approach

against other masking strategies in Figure 11. Note that, for each

masking strategy, we only show the combination of masking and

pre-training that produces the best numerical results in Table 2,

i.e., gated convolution (GConv) with HDR pre-training and input

masking (IMask) with inpainting pre-training. Gated convolution

is not able to produce high frequency textures in the saturated ar-

eas. Input masking performs reasonably well, but still introduces

noticeable artifacts. Our feature masking method, however, is able

to synthesize visually pleasing textures.

Patch Sampling. We show our result without patch sampling (Sec-

tion 3.4) to demonstrate its effectiveness in Figure 11. As seen, by

training on the textured patches (ours), the network is able to syn-

thesize textures with more details and fewer objectionable artifacts.

Loss Function. Finally, we compare the proposed perceptual loss

function against a simple pixel-wise (l1) loss. As seen in Figure 12,

using only the pixel-wise loss function our network tends to pro-

duce blurry images, while the network trained using the proposed

perceptual loss function can produce visually realistic textures in

the saturated regions.

6 LIMITATIONS AND FUTURE WORK
Single image HDR reconstruction is a notoriously challenging prob-

lem. Although our method can recover the luminance and halluci-

nate textures, it is not always able to reconstruct all the details. One

of such cases is shown in Figure 13 (top), where our approach fails

to reconstruct the wrinkles on the curtain. Nevertheless, our result

is still better than the other approaches as they overestimate the
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OursPre-training Patch Sampling

Ground truthGConv +
HDR pre-training

FMask +
HDR pre-training

FMask +
Inp. pre-training

Ours without
patch sampling

IMask +
Inp. pre-training

Masking

Fig. 11. From left to right, we compare our method against two other mask-
ing strategies as well as a pre-training method, and evaluate the effect of
patch sampling. Here, GConv, IMask, and FMask refer to gated convolu-
tion [Yu et al. 2019], only masking the input image, and our full feature
masking method, respectively. Moreover, Inp. pre-training refers to our
proposed pre-training on inpainting task.

Input Only pixel-wise loss Perceptual loss (ours) Ground truth

Fig. 12. We compare the results of our network trained with only a pixel-
wise loss (l1) and the proposed perceptual loss. Using the perceptual loss
function, our network can synthesize visually realistic textures, while the
network trained with only a pixel-wise loss produces blurry results.

brightness of the window and produce blurry results. Moreover, as

shown in Figure 13 (middle), when the input lacks sufficient infor-

mation about the underlying texture, our method could potentially

introduce patterns that do not exist in the ground truth image. De-

spite that, our result is still comparable to or better than the other

approaches. Additionally, in some cases, our method reconstructs

the saturated areas with an incorrect color, as shown in Figure 13

(bottom). It is worth noting that the network reconstruct the build-

ing in blue since trees and skies are usually next to each other in

the training data. As seen, other approaches also reconstruct parts

of the building in blue color.

Although our network can be used to reconstruct an HDR video

from an LDR video, our result is not temporally stable. This is mainly

because we synthesize the content of every frame independently. In

the future, it would be interesting to address this problem through

temporal regularization [Eilertsen et al. 2019]. Moreover, we would

like to experiment with the architecture of the networks to increase

the efficiency of our approach and reduce the memory footprint.

7 CONCLUSION
We present a novel learning-based system for single image HDR

reconstruction using a convolutional neural network. To alleviate

Input

Endo Eilertsen

Ours Ground truth

Marnerides

Input Ours Ground truth

Endo Eilertsen Marnerides

Input Ours

Endo Eilertsen Marnerides

Fig. 13. Failure cases of our approach. From top to bottom, our method fails
to reconstruct the wrinkles on the curtain, introduces textures that are not
in the ground truth, and incorrectly reconstructs the building with sky color.
Note that, the top two examples are synthetic, but the bottom one is real
for which we do not have access to the ground truth image.

the artifacts caused by conditioning the convolutional layer on the

saturated pixels, we propose a feature masking mechanism with

an automatic mask updating process. We show that this strategy

reduces halo and checkerboard artifacts caused by standard con-

volutions. Moreover, we propose a perceptual loss function that is

designed specifically for the HDR reconstruction application. By

minimizing this loss function during training, the network is able

to synthesize visually realistic textures in the saturated areas. We

further propose to train the system in two stages where we pre-train

the network on inpainting before fine-tuning it on HDR generation.

To encourage the network to synthesize textures, we propose a sam-

pling strategy to select challenging patches in the HDR examples.

Our model can robustly handle saturated areas and can reconstruct

high-frequency details in a realistic manner. We show quantitatively

and qualitatively that our method outperforms previous methods

on both synthetic and real-world images.
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